首页> 外文OA文献 >Effect of an extratropical mesoscale convective system on water vapor transport in the upper troposphere/lower stratosphere: A modeling study
【2h】

Effect of an extratropical mesoscale convective system on water vapor transport in the upper troposphere/lower stratosphere: A modeling study

机译:温带中尺度对流系统对对流层/平流层下层水汽输送的影响:模型研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

North American Model (NAM) analysis data and the Weather Research and Forecasting (WRF) Advanced Research WRF (ARW) model version 2.2 are used to investigate the effect of a mesoscale convective system (MCS) in extratropical regions on the transport of water vapor in the upper troposphere and lower stratosphere (UTLS). In addition, physical mechanisms contributing most to the water vapor distribution in the UTLS and the amount of water vapor transported during the most active period of the convective system are examined. In an MCS occurring over the Midwest, the primary focus of the present study, simulated by WRF on 13-14 July 2006, hourly water vapor amount averaged near the system in the UTLS increased substantially during the time that convective system activity developed, and reached maximum values at the same time that the strongest convection and heaviest precipitation occurred at the surface. In the upper troposphere, large positive hourly water vapor tendencies were mainly due to vertical advection with highest rates at the time of highest rain rates. Water vapor tendencies due to microphysical processes tended to oppose the moistening due to advection. Near the tropopause and in the lower stratosphere, however, positive hourly water vapor tendencies were primarily due to microphysics and mixing within the MCS. Horizontal advection also transported some moisture in regions downstream from the MCS at most times, with the largest impacts later in the MCS lifetime. Around the tropopause, microphysical processes related to the presence of convectively injected ice appeared to be the largest contributor to moistening for this case. The results were not found to be sensitive to model microphysical schemes.
机译:北美模型(NAM)分析数据和天气研究与预报(WRF)高级研究WRF(ARW)模型版本2.2用于研究温带地区中尺度对流系统(MCS)对水汽输送的影响对流层高空和平流层低层(UTLS)。此外,还研究了对UTLS中水蒸气分布和对流系统最活跃期间输送的水蒸气量贡献最大的物理机制。在发生于中西部的MCS中,本研究的主要重点是由WRF在2006年7月13日至14日模拟的,在对流系统活动发展并达到在最强对流和最大降水同时出现在地面的最大值。在对流层高层,小时水汽的正趋势较大,主要是由于垂直平流在降雨率最高时具有最高速率。由于微物理过程而引起的水蒸气趋势倾向于与由于对流而引起的湿润趋势相反。然而,在对流层顶附近和平流层下部,每小时的正水汽趋势主要是由于微观物理学和MCS内部的混合。水平对流最多时还向MCS下游地区输送了一些水分,对MCS寿命的后期影响最大。在对流层顶周围,与对流注入的冰有关的微物理过程似乎是这种情况下增湿的最大原因。发现结果对模型微物理方案不敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号